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and (3) becomes 

B’ = b exp(i/l) +4wY 

= b exp(ip) + 4wY[exp( - iq) + exp(i(7 + ZP)}] 
= exp(ip){b + 4wY cos(7 +P)}. 

It can be seen from this equation that it is always possible to choose a $ such that 
B‘ = 0. For example, we make take 

b 
8 W  

* =  exp( - $3). 

This reduces (2) to the form (1) for which w = frl U]. 

It has thus been established that the energy momentum tensor for neutrino fields 
with positive energy density may always be written in the form (1). This is in agree- 
ment with results established by Wainwright (1971). 
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Shape of a self-avoiding walk or polymer chain 

Abstract. Ifp,(r) is the probability that a self-avoiding walk of n steps reaches 
a distance r from the origin, then it is shown, for large n and r > R,, that 

pn(r) ‘.., Rn-d(r/Rn)t exp{ - ( r /Rn) l ’ ( l - y ) }  

where R, is a scaling length which varies as n”, and d is the dimensionality. 
Furthermore, the index t is related to d, v, and a further index y which des- 
cribes the asymptotic behaviour of the total number of self-avoiding walks. 

We have also shown, on the assumption that p , ( r )  - Rn-d(r/Rn)g for 
large n and r < R. that the index g can be related to d, v, y,  and an index U 
which describes the asymptotic behaviour of the total number of self-avoiding 
walks which return to the origin. 

A self-avoiding walk on a lattice is a random walk such that no lattice site is 
visited more than once in the walk. Such walks are of interest as models of polymer 
chains in which ‘excluded volume’ effects are important. Furthermore such walks 
are connected with certain properties of the Ising model (Domb 1969, Fisher 1966) 
so that a study of their properties may have application in the more general problem 
of second-order phase transitions. I n  this note, we use the analogy between the 
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probability distribution, p,( r )  of self-avoiding walks of n steps which reach the point r 
on starting from the origin, and the high-temperature series expansion of the spin- 
spin correlation function of the Ising model. 

For a random walk on a d-dimensional lattice without the self-avoiding condition, 
it is known that p,( r )  behaves for large n as 

where R, = Ronv, S = l/(l-v), and v = & (Domb 1969). R, is a constant of the 
order of a lattice spacing. R, can be thought of as a ‘scaling length‘, which measures 
the mean end-to-end distance. However, the analytical behaviour of p, (r )  for the 
self-avoiding walk is not completely known, although Fisher (Fisher 1966), has 
advanced a powerful argument which suggests that for r 9 R,, 

pfi(r) N Rn-dA(r/Rn) exp{-(r/Rn)’) (2) 
where A(y)  does not vary exponentially fast for large y. Ro and v are both changed 
from their random walk values. There is a large body of numerical and heuristic 
evidence (Domb 1969) to indicate that 

d 6 3 .  
3 

2 + d  
v=- (3) 

Consequently, in two dimensions v = 2 and 6 = 4, and in three dimensions, v = Q 
and 6 = $. In  this paper, we shall derive two new results concerning the behaviour 
of the function A(y).  

Our first new result is to demonstrate that 

with 
A(Y) Y t  Y + W  

t = (l-d/2-y+dv)/(l-v). 

The index y is defined by the statement that, asymptotically for large n, the total 
number of walks of n steps C, behaves as 

c, N ConY-lp, (6) 
where p is the so called ‘connective constant’ (Hammersley 1957). For the random 
walk C, is just qn, where q is the coordination number of the lattice, so that y = 1 
and p = q. For the self-avoiding walk, numerical studies (Martin et al. 1967) show 
that y = $ in two dimensions and 8 in three dimensions. The connective constant p 
must clearly be smaller than (q- 1). The connective constant is sometimes referred 
to as the ‘effective coordination number of the lattice’. Substituting for y in ( 5 )  
gives t = # in two dimensions and t = + in three dimensions. 

We derive the relation ( 5 )  from a consideration of the generating function 

which is analogous to the spin-spin correlation function of the Ising model. The 
limit B -f 0 in (7) corresponds to the limit T + To+ in the Ising model, where T, 
is the transition temperature. Our argument will be readily comprehended by those 
AB 



L84 Letters to the Editor 

familiar with the papers of Ornstein and Zernike (1914), Fisher (1964), and Fisher 
and Burford (1967). That is, the Fourier transform of r ( r ,  e), P(k, e), is assumed to 
behave as 

AK" 
F(k, 8) - ___ 

K2 + k2 
as k .+ 0, where K = .(e) and A is a constant. Furthermore K ,  the inverse coherence 
length, is assumed to behave as 

K N KO& (9) 
as 6' --f 0, with 4 < v < 1. The reasons for assuming (8) are: first, following Ornstein 
and Zernike, the inverse of f(k, e), which is equivalent to the direct correlation 
function defined by Ornstein and Zernike, can be expanded in a power series in K2, 
and the series can be truncated when k is small; and second, exploiting the analogy 
with the Ising model, the exact solution of the two-dimensional Ising model due to 
Onsager suggests the inclusion of the term K" in (8) so that the behaviour of r(0, e) 
agrees with the known solution. The addition of this factor is also supported by 
numerical studies. The assumption (9) is supported by results for the completely 
random walk and the walks consisting only of completely straight configurations. It 
is readily deduced that in the former case K N & I 2 ,  and in the latter case K N 8. 
The self-avoiding walks are assumed to behave somewhere between these extremes. 
Finally, to maintain agreement between f'(0, e) and the expression (6) we must have 

7 = 2- y/v. (10) 

(11) 

If we now take the inverse Fourier transform of (10) we obtain 

r(r, e) K n - ( 3 - d ) / 2 y - ( d - l ) / 2 e - ~ r  

Given the expression (11) one can find p, (r )  by inverting (7) with the aid of 
for KT $ 1 and e -+ 0. 

Cauchy's theorem. Thus with z = e-e we obtain 

where c is larger than the real part of any singularity of I?( r, e). We now introduce 
the variables X = ( ~ , , t - / n ~ ) ~ ,  with 6 = l/(l-v), and p = ne/X, so that, substituting 
(1 1) into (12) we obtain for large n 

p,(r) = t ~ y - ~ - ' " G  (XI (13) 
where 

G(X) = 
- 2 +  nX1 - ( d - 2  + n)( l  - v )  

1 c '+ im 

2 r i  cp-im 
exp{X(p - P% (14) x - 1 dp(Xpv)n+(d-3)/2 

For large X, the integral in (14) can be performed by steepest descents, provided 
v c 1. The argument of the exponential in (14) has a stationary point at p = ps = v8. 
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Expanding the argument about the stationary point so that 

X(p -p") = - XvVd(1 -v )  + xv- 4( 1 -.)(p 4 7 2  + .. . (15) 
one sees that the 'range' of the saddle, that is the region from which the bulk of the 
integral arises, is given by 

Consequently when Xis  large, which implies that KT is large, the saddle point technique 
is consistent with our use of the Ornstein-Zernike form (10). If we define R, by 

R, = (1 -Y)- l 'dVvKg-l?Zv 

= RonV 
we find for r 3 R, 

G(r/R,) N (r/RnY ex~(- ( r /%)~)  (18) 
with t given by (5). Hence follows our first result. 

Our second result concerns the behaviour of p,( r )  in the opposite limit, this time 
for end-to-end distances much less than the scaling length R,. This result depends 
among other things on the assumption that p,( r )  attains a limiting shape in the limit 
n 1 in the sense that 

p,(r> = Rn-dF(r/Rn) (19) 
for arbitrary values of the ratio (r/R,). This assumption is known, in the context of 
the Ising model, as 'strong scaling'. The 'strong scaling' assumption is valid for the 
two-dimensional Ising model for which an exact solution is available but it appears to 
fail for the three-dimensional Ising model (Ferer et al. 1969). 

In addition we make the assumption that C,( r),  the number of self-avoiding walks 
of n steps which reach the point r from the origin, behaves as 

C,(r) N f (r)na-2pn (20) 
for fixed r and large n. The index GC is defined by the statement that, asymptotically 
for large n, U ,  the number of returns to the origin of n steps (polygons) behaves as 

U, N Uona-2pn. (21) 
Numerical studies show that GC = 9 in two dimensions and GC = 4 in three dimensions 
(Martin et al. 1967). The p occurring in (20) and (21) has been proved by Hammersley 
(1961) to be identical with the p occuring in (6). The term na-2 in (21), and the term 
n y - 1  in (6) are conjectures. The expression (20) though plausible and substantiated 
by numerical studies, has not been established rigorously. A proof of the weaker 
statement that the limit as n -+ CO, of C,(rl)/C,(r2) is finite and greater than zero, 
would be useful. 

Using (20) and (6) we obtain 

pn(r)  = C,(r) /C,  - Co-lf(r)na-l-Y ( 2 4  
for fixed r as n + CO. For (22) to be consistent with (19) we require that 

with 

AB* 

F(y) - y g  as y + 0 

g = (yfl-dv-a)/v. 
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Hence (24) predicts that in two dimensions g = $ while in three dimensions g = $6. 
The validity of results (5) and (24) can be tested using numerical data. The 

numerical data support the relation ( 5 )  and support the assumptions made in its 
derivation. On the other hand, relation (24) is not supported by the numerical data 
for self-avoiding walks in three dimensions. The numerical work will be published 
at a later date. 
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On the exact propagator 

Abstract. We evaluate the propagator for an electron subject to a harmonic 
force, a constant magnetic field and a time prescribed electric field, exactly. 
However, our primary concern is to draw attention to important works in the 
literature that have been overlooked, a result of which has brought some dupli- 
cation without always corresponding methodological improvement. 

We employ functional integration and a result due to Pauli (1952), who evaluated 
the propagator for a harmonically bound particle under the influence of a time varying 
force. Pauli's method is based on Van Vleck's work (1928) in connection with the 
correspondence principle. Extensions of these works appear in a beautiful paper of 
De Witt (1957) dealing with quantization in curvilinear spaces. 

The functional integration methods are mainly Lagrangian based, and the deriva- 
tion that follows demonstrates the power of Lagrangian quantum mechanics in that 
an exact propagator can be obtained in cases in which neither energy levels nor eigen- 
functions in the configuration representation exist. However, one should not preclude 
the existence of eigenfuctions, for example, in the momentum representation. An 
example of this nature is provided in ter Haar (1964) for the propagator of a particle 
in a constant field of force. 


